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Abstract— Learning how to capture long-range depen-
dencies and restore spatial information of down-sampled
feature maps are the basis of the encoder-decoder struc-
ture networks in medical image segmentation. U-Net based
methods use feature fusion to alleviate these two problems,
but the global feature extraction ability and spatial informa-
tion recovery ability of U-Net are still insufficient. In this
paper, we propose a Global Feature Reconstruction (GFR)
module to efficiently capture global context features and
a Local Feature Reconstruction (LFR) module to dynami-
cally up-sample features, respectively. For the GFR module,
we first extract the global features with category representa-
tion from the feature map, then use the different level global
features to reconstruct features at each location. The GFR
module establishes a connection for each pair of feature
elements in the entire space from a global perspective
and transfers semantic information from the deep layers to
the shallow layers. For the LFR module, we use low-level
feature maps to guide the up-sampling process of high-
level feature maps. Specifically,we use local neighborhoods
to reconstruct features to achieve the transfer of spatial
information. Based on the encoder-decoder architecture,
we propose a Global and Local Feature Reconstruction
Network (GLFRNet), in which the GFR modules are applied
as skip connections and the LFR modules constitute the
decoder path. The proposed GLFRNet is applied to four
different medical image segmentation tasks and achieves
state-of-the-art performance.
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I. INTRODUCTION

AUTOMATIC segmentation of medical images is a crucial
step in the quantitative pathological assessment and diag-

nosis of many diseases such as colorectal polyp segmentation
in colonoscopy images [1]–[4], choroidal atrophy segmen-
tation in fundus images [5], [6], retinal fluid segmentation
in optical coherence tomography (OCT) images [7], [8],
and multi-organ segmentation in computed tomography(CT)
images [9]–[12].

Modeling long-range dependencies and recovering spa-
tial information of feature maps are critical for the
encoder-decoder structure networks represented by U-Net [13]
in medical image segmentation. Although U-Net and it vari-
ations have achieved state-of-the-art performances in many
medical image segmentation tasks, they still suffer from the
following problems.

First, the ability of global context feature extraction is
insufficient which only depends on feature fusion at dif-
ferent levels. Although the down-sampling of feature maps
allows the network to capture longer dependencies in the
deep layer, the empirical receptive field of CNN is much
smaller than the theoretical one especially on high-level lay-
ers [14]. Recently, some multi-scale feature fusion or attention
mechanism based fully convolutional networks (FCNs) [15]
have been proposed to capture long-range dependencies. For
example, DeepLab [16], [17], CE-Net [18] and PSPNet [19]
combine feature maps generated by different dilated convo-
lution and pooling operations to extract multi-scale context
features. Limited by the parameter sharing of convolution,
these networks may still lack spatial awareness to deal with
different positions, which does not satisfy the requirement that
different pixels need different contextual dependencies. Atten-
tion mechanism has also been employed to exploit long-range
dependencies in some networks [20]–[22]. For example, non-
local network [20] models the features at any two locations in
the feature map, leading to generate more powerful pixel-wise
representation. SENet [21] uses global pooling to collect a
global feature of the entire space, and then distributes it to each
location. However, non-local module is computationally heavy,
and SENet treats pixels with different semantic information
equally which is not robust to pixelwise dense prediction tasks.
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Second, the simple skip connection combines local informa-
tion with different levels indiscriminately and ignores semantic
information. On one hand, low-level features are too noisy to
provide sufficient high-resolution semantic guidance. On the
other hand, due to the lack of spatial information in high-level
feature maps, direct concatenation or addition cannot solve
the misalignment of semantic information between feature
maps. In order to fuse features efficiently and eliminate the
interference of irrelevant noise in low-level features, Attention
U-Net [23], AG-Net [24], ACNet [25] and CPFNet [26] use
gating mechanism to emphasize or suppress features with
different semantic information, which makes the feature fusion
more flexible. However, none of these methods solve the
problem of semantic misalignment between high-level features
and low-level features.

Third, feature up-sampling for spatial information recovery
is very important in semantic segmentation, especially in
medical image segmentation. The most widely used feature
up-sampling operators are the nearest neighbor interpolation
and bilinear interpolation, which only depend on the distance
between pixels. Transposed convolution based up-sampling
applies the same convolution kernel across the entire image,
regardless the semantic information of different locations in
the image. SFNet [27] predicts semantic flow to align low-level
and high-level feature maps and achieves good performance
in natural image segmentation. Sub-pixel convolution [28] is
widely used for semantic segmentation, which is based on the
assumption that spatial information is embedded in channels.
For example, the idea of DUpsampling [29] is to use a linear
transformation to approximate the structural information of
the label. Similar to transposed convolution, DUpsampling
applies the same parameter to the entire space. CARAFE [30]
reassembles the neighbor of each location to achieve up-
sampling, but it cannot integrate the rich spatial information
of low-level feature maps.

Motivated by the above discussions and attention mecha-
nism [20], [31], [32], we propose two novel feature recon-
struction modules to solve the above problems in the
encoder-decoder structure network in this paper, named as
Global Feature Reconstruction (GFR) module and Local Fea-
ture Reconstruction (LFR) module respectively. The GFR
module introduces global features from high-level features to
low-level features and reassembles cross-level global features
to increase the receptive field of the network and reduce the
semantic gap between features at different levels. The LFR
module uses low-level feature map to guide the up-sampling
process of high-level feature map, and can adaptively recon-
struct local features at different locations to achieve spatial
information restoration. The main contributions of this work
are summarized as follows:

1) We propose a novel Global and Local Feature Recon-
struction Network (GLFRNet) equipped with GFR and
LFR modules, which can effectively capture global con-
text features and restore the spatial information in high-
level features, respectively.

2) From the viewpoint of feature fusion, the proposed
GFR and LFR modules solve the imbalance between
the semantic information and spatial information of

Fig. 1. Illustration of the proposed GLFRNet.

feature maps from the global and local perspectives
respectively.

3) The proposed GLFRNet is applied in four challenging
tasks including colorectal polyp segmentation, choroidal
atrophy segmentation, multi-class retinal fluid segmen-
tation and multi-organ segmentation. The state-of-the-art
segmentation performances show the good generalization
of the proposed GLFRNet.

The remainder of this paper is organized as follows.
In Section II, the proposed GLFRNet is described in detail.
Section III presents the relevant experimental results on four
different medical image segmentation tasks. The discussion
and analysis about the proposed GFR and LFR modules and
conclusion are given in Section IV.

II. METHOD

In this section, we first present the general framework of the
proposed GLFRNet and then introduce the two feature recon-
struction modules which capture global semantic information
and recover local spatial information, respectively.

A. Overview

Fig.1 shows the proposed GLFRNet which is based on
the encoder-decoder architecture. The pre-trained ResNet34 is
used as the backbone network to extract hierarchical feature
representations. Multiple GFR modules are placed between the
encoder and the decoder as skip connections to increase the
receptive fields and enrich the semantic information of the low-
level features. The LFR modules act as decoder, adaptively
up-sampling and fusing features step by step.

B. Global Feature Reconstruction Module

The overall architecture of the proposed GFR module is
shown in Fig.2. For each level feature map, the GFR module
consists of three steps: (1) Generate a set of global descriptors
representing each class. (2) Combine the global descriptors
of this level with all higher-level global descriptors to obtain
cross-level global descriptors. (3) Predict the reconstruction
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Fig. 2. The illustration of global feature reconstruction (GFR) module.

weights for each location and use the cross-level global
descriptors to reconstruct each pixel. Therefore, each pixel can
not only aggregate all the features of this level, but also capture
features at other levels.

1) Global Fescriptor Generator: Given a flattened feature
map Xl ∈ R

din×H W , where l denotes the level of this feature
map, din denotes the number of channels, H and W are
its spatial dimensions. We first feed Xl into a convolution
layer to generate a attention map Al ∈ R

dk×H W and a
embedding feature Bl ∈ R

dh×H W , where dh and dk denote the
dimension and the number of global descriptors, respectively.
Considering that the feature map of each level has different
channel dimensions, we set dh as 64 in our experiments to
reduce the dimension of weights and computational cost. The
global descriptors are generated as follows:

Zl = [z1
l , z2

l , . . . , zdk
l ] = ρ(Al)B

�
l ∈ R

dk×dh (1)

where ρ denotes the operation of applying so f tmax normal-
ization in space.

In order to get discriminative global descriptors, the learning
of attention map Al is deeply supervised. Specifically, the
attention map Al is divided into n groups by channel, where
n is the number of segmentation classes. Then the features of
each group in Al are averaged in the channel dimension to
obtain the prediction of deep supervision. Note that the s-th
global descriptor zs

l ∈ R
dh , (s = 1, 2, . . . , dk) depends on the

s-th channel in the attention map Al ∈ R
dk×H W . Therefore,

corresponding to different groups of Al , zs
l can aggregate

discriminative features of different classes and each class has
dk/n global descriptors at each level.

2) Cross-Level Global Descriptors: For the l-th level feature
map, if the global descriptors Zl extracted at this level are used
for feature reconstruction, the pixel at each location will be
associated with each other through Zl . In addition, we combine
the global descriptors of this level with all higher-level global
descriptors to obtain a set of cross-level global descriptors,

which can be formulated as:
Z �

l = concat (Zl, Zl+1, . . . , Zl+m) ∈ R
(m+1)dk×dh (2)

where Zl+1, . . . , Zl+m are the global descriptors generated
from (l + 1)-th, . . . , and (l + m)-th level feature maps.

In this way, low-level feature maps can be reconstructed by
using descriptors from high-level features with strong semantic
information. So the reconstructed feature map will be both
rich in spatial details and semantic information. In other
words, high-level feature maps use a few global descriptors
to efficiently transfer the semantic information to low-level
feature maps.

3) Global Feature Reconstruction: The next step is to use
the cross-level global descriptors Z �

l to reconstruct the features
of each location. We use 1 × 1 convolution to predict global
reconstruction weights Vl ∈ R

(m+1)dk×H W based on the
current feature map Xl , where m represents the number of
connections of global descriptors generated from higher level
feature maps, seen in Fig.1. so f tmax function in channel
dimension is used to normalize the reconstruction weights
and enhance the ability of global descriptors selection. The
reconstruction process of the feature map Xl can be formulated
as:

X̃l = Z ��
l so f tmax(Vl) (3)

where X̃l ∈ R
dh×H W represents the reconstructed feature map.

Finally, to prevent the degradation of network training, through
a 1 × 1 convolution, X̃l is added with the input feature Xl to
obtain the final global reconstructed feature.

C. Local Feature Reconstruction Module

In order to transfer the spatial information in low-level
features to high-level features, we propose the LFR module.
The LFR module uses low-level features to guide the local
feature reconstruction of high-level features so that the fea-
ture up-sampling and semantic alignment can be achieved.
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Fig. 3. The illustration of local feature reconstruction (LFR) module.

As shown in Fig.3, the proposed LFR module takes two
adjacent feature maps Xl−1 and Xl as inputs and outputs a
new feature map Xout , which combines the spatial information
and semantic information of both Xl−1 and Xl .

1) Reconstruction Kernel Prediction: First, in order to reduce
parameters and computational cost, we adopt two 1×1 convo-
lutions to compress the channels of Xl−1 and Xl respectively.
Bilinear interpolation is used to up-sample the high-level fea-
ture map. Next, these two feature maps are fused by element-
wise summation. Then, the fused feature map is fed into a
3×3 convolution to get the prediction of reconstruction kernel
K ∈ R

k2×Hl−1×Wl−1 , where k represents the neighborhood
size of local feature reconstruction. So the prediction of the
reconstruction kernel K can be formulated as:

K = sof tmax

(
conv f

(
U p

(
θ(Xl)

) + ψ(Xl−1)
))

(4)

where θ(·) and ψ(·) represent 1×1 convolutions with parame-
ters Wθ and Wψ respectively, and U p(·) represents the bilinear
interpolation. conv f (·) is the 3 × 3 convolution. so f tmax
function is used to normalize the predicted reconstruction
kernel.

2) Local Feature Reconstruction: To preserve the relative
location information during the reconstruction process and
obtain the semantic-rich up-sampled feature, local feature
reconstruction linearly assembles the k × k neighborhood of
each location. We use another 3 × 3 convolution convl(·) to
reduce the channel dimension of Xl , up-sample it to the same
size as Xl−1 and get X̄l :

X̄l = U p
(
convl(Xl)

)
(5)

For the pixel at position [i, j ] and its corresponding recon-
struction kernel K[i, j ] ∈ R

k×k , the reconstructed local fea-
ture X �

l [i, j ] is can be formulated as Equation (6), where
r = �k/2�:

X �
l [i, j ] =

r∑
n=−r

r∑
m=−r

K[i, j ][n,m] · X̄l [i + n, j + m] (6)

Local feature reconstruction is more flexible than other
up-sampling operations such as bilinear interpolation and

transposed convolution, because it can predict the kernel by
integrating spatial information and semantic information in
Xl−1 and Xl , enabling the relevant points in the local region
get more attention. This benefits from so f tmax function
shown in Equation (4), which makes the local reconstruction
kernels more sharp. The phenomenon of inconsistent cate-
gories and features often occurs at the edge of objects, that
is, pixel [i, j ] and its neighbor pixel [i + n, j + m] may have
the same category and different features. LFR module can
make the categories and features consistent, thereby improving
the recognition of the edge of the object. For example, if the
prediction K[i, j ][i + n, j + m] is close to 1 and the weights
of other positions are close to 0, the position [i + n, j + m]
will get almost all attention of position [i, j ]. According to
Equation (6), the reconstructed feature will be X �

l [i, j ] ≈
X̄l [i +n, j+m], which makes the features of the two positions
consistent. At last, the reconstructed high-level feature map X �

l
and the low-level feature map Xl−1 are concatenated and fed
into a sub-network with two 3 × 3 convolution layers to get
the final output feature map Xout .

D. Implementation Details

Our experiments are implemented on the public PyTorch
platform and NVIDIA RTX 3090 GPU with 24GB memory.
SGD with a momentum of 0.9 and weight decay of 0.0001 is
used as the optimizer. We adopt the poly learning rate policy to
schedule learning rate lr = baselr

(
1 − iter

max_iter

)power , where
basic learning rate baselr is set to 0.01, power is set to 0.9,
i ter and max_i ter represent the current iteration number and
the maximum iteration. Batch size varies according to the
dataset. We replace the encoder in U-Net with the pre-trained
ResNet34 and take it as the Baseline. We have release our
codes on Github.1

The number of global descriptors dk in the GFR module
is set to 8 times the number of categories. The reconstruction
kernel size k in the LFR module is set to 5. We employ a joint
loss function consisting of Dice loss LDice and cross-entropy

1https://github.com/blue88blue/GLFR
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loss LC E as the segmentation loss Lseg :

Lseg = LDice + LC E (7)

In the GFR module, the deeply supervised loss LAl for the
learning of the attention map Al also uses the Dice loss
and cross-entropy loss based joint loss function. The total
loss function for the training of GLFRNet can be defined as
follows:

Ltotal = Lseg + λ

4∑
l=1

LAl (8)

where l = 1, 2, 3, 4 correspond to the four GFR modules in
Fig.1. λ is a trade-off parameter between segmentation loss and
deep supervision loss of attention map, which is set to 0.2 in
all our experiments.

III. EXPERIMENTS

The proposed framework has been validated with four
applications: (1) colorectal polyp segmentation in colonoscopy
images, (2) choroidal atrophy segmentation in fundus images,
(3) multi-class retinal fluid segmentation in optical coherence
tomography (OCT) images, and (4) multi-organ segmentation
in abdominal computed tomography (CT) scans. The evalua-
tion metrics used in the experiments include Dice coefficient
(Dice), intersection over union (IoU), accuracy(Acc), sensitiv-
ity (Sen) and Hausdorff distance (HD), which are defined as
follows.

Dice = 2T P

2T P + F P + F N
(9)

IoU = T P

T P + F P + F N
(10)

Sen = T P

T P + F N
(11)

Acc = T P + T N

T P + F P + T N + F N
(12)

H D = max
(

max
p∈P

min
y∈Y

d(p, y),max
y∈Y

min
p∈P

d(p, y)
)

(13)

where T P , T N , F P and F N represent the number of true
positives, true negatives, false positives and false negatives
respectively. P and Y represent the predicted pixel set and
the target pixel set respectively. Function d(·) calculates the
Euclidean distance between two pixels. Hausdorff distance
measures the similarity between two sets of points.

In all tasks, we take Dice as the major evaluation metric
and conduct Wilkerson signed rank test on it to verify the
statistical significance of improvement.

A. Colorectal Polyp Segmentation

Colorectal cancer has high morbidity and mortality, which
is a serious threat to human health [33]. Colorectal polyp
is believed as one of the early symptoms of colorectal can-
cer. The automatic segmentation of colorectal polyp from
colonoscopy images is very important, since it can help
the clinicians accurately locate polyp areas for the further
diagnosis or surgeries. Due to the varying appearances and

TABLE I
THE RESULT OF COMPARISON EXPERIMENTS AND ABLATION

STUDIES ON COLORECTAL POLYP SEGMENTATION TASK

(W/O MEANS WITHOUT THE FOLLOWING COMPONENT)

similar color to the background, colorectal polyp segmentation
is very challenging.

Kvasir-SEG [34] is a large-scale challenging dataset which
contains 1000 colonoscopy images with polyp regions.
We randomly divide the 1000 images into 525 for training,
175 for validation and 300 for testing. The resolution of the
images varies from 332 × 487 to 1920 × 1072 pixels. For
simplicity, the images are resized to 512 × 448 with main-
taining the average aspect ratio. Online random contrast trans-
formation, brightness transformation, left-right and top-down
flipping are applied for data augmentation. Dice coefficient
(Dice), intersection over union (IoU) and accuracy (Acc) are
adopted as evaluation metrics.

The proposed GLFRNet is compared with state-of-the-
art algorithms, including U-Net [13], Attention U-Net [23],
UNet++ [35], CE-Net [18], PSPNet [19], CPFNet [26],
GCN [36], SFNet [27], DeepLabV3+ [17], PraNet [37],
EMANet [32]. In addition, in order to verify the effectiveness
of the proposed GFR and LFR modules, we conduct ablation
experiments of two modules respectively.

As shown in Table I, our GLFRNet achieves the best per-
formance. Compared with the Baseline (replace the encoder in
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Fig. 4. Visual comparison between GLFRNet and state-of-the-art networks for polyp segmentation. For each row, we show an input image and
its ground truth, and the corresponding output of each network. Green, red and yellow regions represent the false negative, false positive and true
positive, respectively.

U-Net with the pre-trained ResNet34), the performance of the
proposed GLFRNet gets overall improvement (3.52% for Dice
coefficient, 4.17% for IoU and 1.11% for Accuracy). Dilated
convolutional structure networks such as DeepLabV3+ [17]
and EMANet [32] achieve similar performances compared
with encoder-decoder structure networks such as PraNet [37]
and SFNet [27]. However, the use of dilated convolution keeps
the feature map at a high resolution, which increases the
memory consumption and computational cost. PraNet [37]
was proposed for real-time colorectal polyp segmentation, but
its performances in all metrics are far behind our proposed
GLFRNet. HarDNet-MSEG [38] used HarDNet [40] as the
backbone. Multi-scale convolution, dilated convolution and
dense aggregation were used in the decoder stage. Its overall
encoder-decoder structure is similar to our GLFRNet, but it
still does not outperform the proposed GLFRNet on Kvasir-
SEG dataset. We think there are two possible reasons: (1) The
element-wise multiplication based dense feature aggregation
in the decoder of HarDNet-MSEG treats all levels of features
equally, while our LFR module takes into account the rela-
tionship between feature maps efficiently, which can preserve
the relative location information during the reconstruction
process and obtain the semantic-rich up-sampled feature.
(2) The self-attention mechanism used in GFR module is more
flexible than the convolution and dilated convolution used in
RFB. In order to combine the advantages of CNN and attention
mechanism, TransFuse-S [39] and TransFuse-L innovatively
used TransFormer [41] and CNN as dual encoders, and fused
features in a way similar to CBAM [42] module in the
decoder stage. Although both TransFuse-S and TransFuse-L
perform well on Kvasir-SEG dataset, this structure, especially
TransFuse-L, introduces a lot of computational cost (see
the GFLOPs in TABLE I). The proposed GLFRNet gets
an efficient combination of CNN and attention mechanism,
and achieves the best trade-off between performance and
efficiency.

To evaluate if our improvement is statistically significant,
the Wilcoxon signed-rank test is conducted on Dice coefficient
in both comparison experiments and ablation studies. It can be
seen from Table I that all p-values are less than 0.05, indicat-
ing that our method has achieved a significant improvement

compared to other methods. We give a few examples for visual
comparison in Fig.4, which demonstrate the powerful global
context feature aggregation capability of GLFRNet.

1) Ablation Study for GFR: As shown in Table I, the addition
of the GFR module without deep supervision to the Base-
line (Baseline+GFR_w/o_DS) makes the network comprehen-
sively improve on all three evaluation metrics. Using deep
supervision (Baseline+GFR) to perform feature selection on
global descriptors further improves the performance, which
has completely outperformed other state-of-the-art methods.
In order to verify the validity of the global descriptor con-
nection, we remove all the global descriptor connections from
the high-level feature maps (Baseline+GFR_w/o_Conn). This
results in the decrease in all three metrics compared with the
complete GFR module (Baseline+GFR) and proves the neces-
sity of the global descriptor connection in turn. As can be seen
from Table I, the computational cost of the global descriptor
connection is negligible, which shows that it is very efficient
in semantic guidance. In addition, we also conduct ablation
experiments on the number of GFR modules (Baseline+1GFR,
Baseline+2GFR, Baseline+3GFR), as shown in Table I.
It shows that one GFR module per level is suitable for the
effective obtainment of the global receptive field and the
reduction of the semantic gap between hierarchical features.

Fig.5 presents some visual comparisons between the out-
put feature maps of simple skip-connections and our GFR
modules, in which the feature maps are averaged according
to the channel dimension and normalized to 0-255 to get the
visualizations. As shown in Fig.5, our GFR module highlights
the response to the segmentation targets and suppresses the
response to the irrelevant background noise, indicating that
it can indeed reduce the gap in the semantic information of
features at all levels.

2) Ablation Study for LFR: As shown in Table I, The embed-
ding of LFR module into Baseline (Baseline+LFR) also helps
to improve the performance. Compared with the Baseline, the
Dice increases 1.15% and reaches 88.69%. And the other two
metrics also show significant improvements. This is benefited
from the LFR module’s recovery of the spatial information of
the deep feature map. GFLOPs shows that the LFR module
is more efficient than the Baseline’s original decoder due to
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Fig. 5. Visual comparison of feature maps transferred by the skip
connection before and after insertion of GFR module. The first col-
umn shows two input images and their corresponding ground truth.
Columns 2 to 5 show different levels of feature maps, where the white
curves represent the boundaries of the ground truth.

channel compression. In order to verify that the low-level
feature maps have guiding effect on the up-sampling process
of the high-level feature maps, we remove the guidance of the
low-level feature maps (Baseline+LFR_w/o_LG), that is, the
low-level feature maps do not participate in the prediction of
the local reconstruction kernel. This leads to 0.45% decrease of
Dice than that of the complete LFR module(Baseline+LFR),
which implies that the guidance for spatial information recov-
ery is necessary. The ablation experiments of the number of
LFR modules are also given in Table I, which show that one
LFR module per stage is appropriate for the recovery of spatial
information and feature alignment to the features of adjacent
stages.

3) ComputationalComplexity Analysis: Our GFR module can
be regarded as an improvement of the self-attention mecha-
nism. Compared with non-local [20] block, GFR module has
much lower computational complexity and can be embedded
anywhere in the network. The non-local block needs to cal-
culate the similarity between all pixels, so its computational
complexity is O(N2), where N = H × W represents the size
of feature map. The GFR module uses global descriptors to
compress the features in space, reducing the computational
complexity to O(dk N), where dk is the number of global
descriptors and dk � N . The LFR module only uses pixels in
k × k neighborhood for reconstruction, and its computational
complexity is O(k2 N), where k � N . In our experiments, k
is set to 5 and dk is set to 8 times the number of categories.
In addition, because medical image datasets are usually small,
it is not the best choice to use deeper ResNet50 as backbone,
as shown in Table I.

B. Choroidal Atrophy Segmentation

Pathologic myopia and its complications are major causes of
visual impairment and even blindness [43]. Choroidal atrophy
is one of the earliest pathological changes of pathologic
myopia and is also an important clinical manifestation in the
diagnosis of pathological myopia. Therefore, the automatic
segmentation of choroidal atrophy is important for the early

TABLE II
THE RESULT OF COMPARISON EXPERIMENTS AND ABLATION

STUDIES ON CHOROIDAL ATROPHY SEGMENTATION TASK

diagnosis and treatment of pathologic myopia. Segmentation
of choroidal atrophy on fundus images is still challenging
because the shape and size of the atrophy vary greatly in
different stages of pathologic myopia and the boundary is
blurred.

The dataset is provided by Shanghai General Hospital
which contains 600 fundus images with pathologic myopia
(2032 × 1934). The collection and analysis of image data
were approved by the Institutional Review Board of Shanghai
General Hospital and adhered to the tenets of the Declaration
of Helsinki. Informed consent was obtained from all subjects.
We center-crop each image and downsample the image to
512×512. The dataset is randomly divided into 320 images for
training, 80 images for validation and 200 images for testing.
Multiple online random augmentation methods are used for
data augmentation, including random contrast and brightness
transformation, left-right and up-down flipping and rotations
from -60 degree to 60 degree.

The results of comparison experiments and ablation exper-
iments are shown in Table II. The proposed GLFRNet
achieves 87.61% in Dice, 79.28% in IoU, 98.50% in Accu-
racy and 86.12% in Sensitivity. Compared with the Baseline,
GLFRNet improves significantly in Dice, IoU and Sensi-
tivity with 3.15%, 4.46%, and 5.69%, respectively. GLFR-
Net also significantly outperforms all the other state-of-
the-art networks with all p-values < 0.05 (Dice index,
Wilcoxon signed-rank test). The ablation experiments demon-
strate the effectiveness of the proposed GFR and LFR modules.
The visual comparisons are shown in Fig.6. Although the
shape and size of choroidal atrophy vary greatly in differ-
ent stages of pathologic myopia, GLFRNet uses GFR and
LFR modules to process large and small targets from both
global and local perspectives and achieves good segmentation
results.
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Fig. 6. Visual comparison between GLFRNet and state-of-the-art networks for choroidal atrophy segmentation. Green, red and yellow regions
represent the false negative, false positive and true positive, respectively.

TABLE III
THE RESULT OF COMPARISON EXPERIMENTS AND ABLATION STUDIES ON MULTI-CLASS RETINAL FLUID SEGMENTATION TASK

C. Multi-Class Retinal Fluid Segmentation
Retinal fluid refers to the accumulation of the leaked

fluid within the intercellular space of the retina due to the
disruptions in blood-retinal barrier, which mainly includes
three types: intra-retinal fluid (IRF), sub-retinal fluid (SRF)
and pigment epithelial detachment (PED). Retinal fluid is
the pathological manifestation of many fundus diseases in
macula, such as diabetic retinopathy (DR), age-related macular
degeneration (AMD), and retinal vein occlusion (RVO).

The multi-class retinal fluid segmentation task is performed
on the public dataset from the MICCAI2017 RETOUCH Chal-
lenge [44], which consists of 70 OCT volumes (6936 B-scan
slices) with three types of retinal fluid. We resize each image
and crop out a 256×512 region-of-interest (ROI) in each image
according to the pixel intensity distribution. The 70 OCT
volumes are vendor evenly divided into 23, 23 and 24.
A 3-fold cross validation strategy is performed both in ablation
experiments and comparison experiments. In the test phase,
each slice in the volume is processed separately and then

recombined into one volume to calculate 3D evaluation metrics
including Dice, IoU, Accuracy (Acc) and Sensitivity (Sen).
Online random contrast, brightness transformation, left-right
flipping and Gaussian blur are applied for data augmentation.

As shown in Table III, the proposed GLFRNet is com-
pared with ten other excellent networks. Since the fluid
targets are often small in the OCT images, the networks
without skip connections such as EMANet [32] and PSP-
Net [19] show poor performances. UNet++ [35] achieves
a better performance, due to the dense connections of the
features in skip connections. It is worth noting that although
DeepLabV3+ [17] achieves comparable results with the pro-
posed GLFRNet in terms of sensitivity (Sen), its IoU and Dice
are far behind those of GLFRNet, indicating that Deeplabv3+
has over-segmentation problems in all three types of fluids.
The proposed GLFRNet still significantly outperforms other
excellent networks on this task. Relying on the GFR and LFR
modules, our method has achieved stable improvements in the
segmentation of three types of retinal fluids, which proves
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Fig. 7. Visual comparison between GLFRNet and state-of-the-art networks for multi-class retinal fluid segmentation, where the red, green and blue
regions denote the IRF, SRF and PED, respectively. Best view in color and zoom in.

TABLE IV
THE RESULT OF COMPARISON EXPERIMENTS AND ABLATION STUDIES ON MULTI-ORGAN SEGMENTATION TASK

the effectiveness of the two proposed modules. As can be
seen from Fig.7, GLFRNet can adapt to fluids with various
shapes and low contrast better and achieve better segmentation
performance.

D. Multi-Organ Segmentation

The segmentation of abdominal organs is important for clin-
ical diagnosis and treatment planning of related diseases [45].
Recently, the performances of deep learning based methods
in multi-organ segmentation are greatly improved compared
with the classical methods which are based on statistical shape
models [46] or multi-atlas segmentation [12].

We apply the proposed GLFRNet on 30 abdominal CT scans
(3779 axial slices in total) from the MICCAI 2015 Multi-Atlas
Abdomen Labeling Challenge with 8 types of organ targets
including spleen, right kidney, left kidney, gallbladder, liver,
stomach, aorta and pancreas [47]. In order to use the contextual
information in 3D space, we convert the 3D CT slices to 2.5D
data to train the proposed GLFRNet. Specifically, we combine
each axial slice and its two adjacent slices into a 3-channel
image, which is taken as the input of GLFRNet. The output of

GLFRNet corresponds to the prediction result of the middle
slice. Same as in the multi-class retinal fluid segmentation task,
we combine the prediction of each slice into one volume to
calculate the 3D evaluation metrics. The 2.5D data processing
strategy is also adopted for all the networks in the comparison
and ablation experiments, which are shown in Table IV. The
3-fold cross validation strategy is adopted both in comparison
and ablation experiments. Online data augmentation is per-
formed including random contrast enhancement and random
brightness enhancement.

Table IV shows the results of comparison experiments
between the proposed GLFRNet and other excellent networks
and ablation experiments of GFR and LFR modules. Eval-
uation metrics include Dice and Hausdorff distance (HD).
Relying on the semantic flow to achieve semantic alignment
between feature maps, SFNet [27] has achieved good per-
formance in this task and the above three tasks, while our
LFR module can achieve better spatial information recov-
ery (Baseline+LFR). With the equipping of GFR and LFR
modules, our GLFRNet outperforms other methods in the
segmentation of each organ, and the average Dice is improved
by 4.16% compared to the Baseline. The p-values calculated
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Fig. 8. Visual comparison between GLFRNet and state-of-the-art networks for multi-organ segmentation. Best view in color and zoom in.

Fig. 9. The reconstruction weight visualization results of each global descriptor in the GFR module at some specific locations. The horizontal
axis represents the index of the cross-level global descriptors, and the vertical axis represents the corresponding reconstruction weight. According
to the different number of feature levels and target categories in different segmentation tasks, the numbers of cross-level global descriptors are
different. P1, P2 and P3 indicate different locations of the images. In the GFR module, pixels of the same category tend to choose consistent global
descriptors for feature reconstruction, while pixels with different semantic information adaptively choose different global descriptors. Best view in
color and zoom in.

based on the average Dice shows the improvements are
statistically significant. As can be seen from Fig.8, GLFRNet
can segment both small organs such as gallbladder and large
organs such as stomach more accurately.

IV. DISCUSSION AND CONCLUSION

A. Analysis of GFR Module

To explain how our proposed GFR module works, we visu-
alize the reconstruction weights at different locations (P1, P2
and P3 shown in Fig.9) in the input images. As shown in

Fig.9, except the fourth-level feature that only uses its own
global descriptor for reconstruction, features at levels 1, 2 and
3 are all reconstructed by adaptively selected cross-level global
descriptors. As can be seen from Fig.9(a), P1, P2 and P3
belong to choroidal atrophy, though they are far away from
each other. As can be seen from Fig.9(b-e), the features of
P1, P2 and P3 capture consistent global features at all levels,
making the intra-class features more compact. In Fig.9(f),
P1 and P3 are located in the colorectal polyp regions, and
P2 is located in the background. In the low-level feature
reconstruction, since the local features of the three locations
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TABLE V
DICE COMPARISON OF THE LFR MODULE AND OTHER UP-SAMPLING

METHODS ON FOUR TASKS(%). TASK1 TO TASK4 REPRESENT

COLORECTAL POLYP SEGMENTATION, CHOROIDAL ATROPHY

SEGMENTATION, MULTI-CLASS RETINAL FLUID

SEGMENTATION AND MULTI-ORGAN

SEGMENTATION, RESPECTIVELY

Fig. 10. Visual comparison of feature maps before and after the local
feature reconstruction. X̄l and X�

l represent the visualized feature maps
before and after reconstruction in each stage of LFR module. Stage 1 to
stage 4 correspond to the decoding process of the feature maps of
level 1 to level 4 in the encoder, where the white curves represent the
boundaries of the ground truth.

are similar, the reconstruction weights do not show obvious
differences, as shown in the Fig.9(g) and (h). As the feature
layer gets deeper, the difference between P2 and the other
two locations become more obvious, while the reconstruction
weights of P1 and P3 are more consistent, as shown in the
Fig.9(i) and (j). As shown in Fig.9(k), P1, P2 and P3 belong to
the background, SRF and PED respectively. The reconstruction
weights shown in Fig.9(l)-(o) indicate that the GFR module
can enable features at each location adaptively capture the
global features. Based on the above analysis, it is shown that
our GFR module can adaptively capture distinguishable global
features according to the local features.

B. Analysis of LFR Module

The LFR module acts like an up-sampling function in the
decoder stage. In order to verify that our LFR achieves a more
flexible and robust feature up-sampling, we adopt other four
up-sampling methods including bilinear interpolation, trans-
posed convolution, sub-pixel convolution [28] and CARAFE
[30] in the Baseline and compare the Dice coefficients.

As shown in the Table V, although transposed convolution
gets better performances on Task1 (colorectal polyp seg-
mentation) and Task2 (choroidal atrophy segmentation), it is
worse than bilinear interpolation on Task3 (multi-class retinal
fluid segmentation) and Task4 (multi-organ segmentation).
Similarly, sub-pixel convolution exceeds bilinear interpolation
on three of the tasks, while it is worse on Task4. CARAFE and
our proposed LFR module have achieved stable improvements
on all four tasks. Although CARAFE has achieved comparable
results to LFR on Task2 and Task3, the overall improvement
of the LFR module is better.

Fig.10 shows the visualized features of each level before(X̄l,
bilinearly upsampled) and after the local reconstruction (X �

l ).
As can be seen from Fig.10, with the guidance of low-
level features, the misalignment of semantic boundaries caused
by down-sampling is gradually corrected and the intra-class
features become more consistent.

C. Conclusion

In this paper, we propose an end-to-end deep learning
framework named GLFRNet for medical image segmenta-
tion. Two novel modules including global feature reconstruc-
tion (GFR) module and local feature reconstruction (LFR)
module are designed to solve the problem of insufficient
global context feature extraction and spatial information
restoration in encoder-decoder structure network respectively.
To validate our approach, we conduct experiments on four
different segmentation tasks including colorectal polyp seg-
mentation, choroidal atrophy segmentation, multi-class retinal
fluid segmentation and multi-organ segmentation. The pro-
posed GLFRNet achieves excellent performances on these four
different segmentation tasks, which indicates that the proposed
GLFRNet is more practical and universal than other state-
of-the-art methods. Our future research direction is to try to
apply the proposed global and local feature reconstruction
mechanism to multi-modal data analysis, which may provide
a flexible and efficient way for multi-modal data registration
and fusion.
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